Definition:
- Let a,b∈Z,m∈N+.
- If m∣(a−b), i.e. of there exists k∈Z, such that a−b=km
- We say that a and b are congruent modulo m
- Example: 4 and 9 are congruent modulo 5
Theorem:
- Let a and b be integers, and let m be a positive integer.
- Then a≡b(modm) if and only if (amodm)=(bmodm)theorem
- Let m be a positive integer.
- The integers a and b are congruent modulo m if and only if there is an integer k such that a=b+km.theorem
- If a≡b(modm) and c=d(modm) then:theorem
- a+c≡b+c(modm)
- ac≡bd(modm)
- Then a≡b(modm) if and only if (a−b)=kmtheorem