Description: Conditional joint distribution’s Variance Conditional variance of X given that Y=y Var(X∣Y)=E[(X−E[X∣Y])2∣Y]=E[X2∣Y]−(E[X∣Y])2 Hence E[Var(X∣Y)]=E[E[X2∣Y]]−E[(E[X∣Y])2]=E[X2]−E[(E[X∣Y])2] Also, since E[E[X∣Y]]=E[X], we have Var(E[X∣Y])=E[(E[X∣Y])2]−(E[X])2 Adding the last two equations, we have Var(X)=E[Var(X∣Y)]+Var(E[X∣Y])